
|                                 | 7      |                 |         | 8       |          |   |
|---------------------------------|--------|-----------------|---------|---------|----------|---|
|                                 |        |                 | REVISIO | ONS     |          |   |
|                                 | REV.   | DESC            | RIPTION | DATE    | APPROVED |   |
|                                 | A      | initial         | release | 9/16/20 | MGC      |   |
|                                 | B      |                 |         |         |          |   |
| (49.2 m/s<br>t Height           |        | ec gust)        |         |         |          | A |
| -                               |        |                 |         |         |          |   |
| 8 m/s)                          |        |                 |         |         |          | В |
| 572 GR65<br>TM A572<br>:: Q345B | GR5    | 0)<br>M A572 GR | 250)    |         |          |   |
| )mm - Gl                        | R 8.8  |                 |         |         |          |   |
| in Grade<br>M F2329             | e AST/ | M F1554 G       | 55)     |         |          | С |
| nm - GR a                       | 8.8    |                 |         |         |          |   |
| in GR A3<br>M F2329             | 325)   |                 |         |         |          |   |
|                                 |        |                 |         |         |          |   |

#1 #2 #3 #4 0.197/5 0.197/5 0.197/5 0.197/5 0.85/ 2.79 2.835/ 9.3 3.65/ 11.98 3.66/12 270/ 10.63 234/ 9.2 142/5.6 188/7.4 280/11 269/10.6 234/9.2 188/7.4 NA NA NA Section Weight (kg)/ (lb) 153.5/ 338 149.5/ 329 110/ 242 107/ 235.4

F

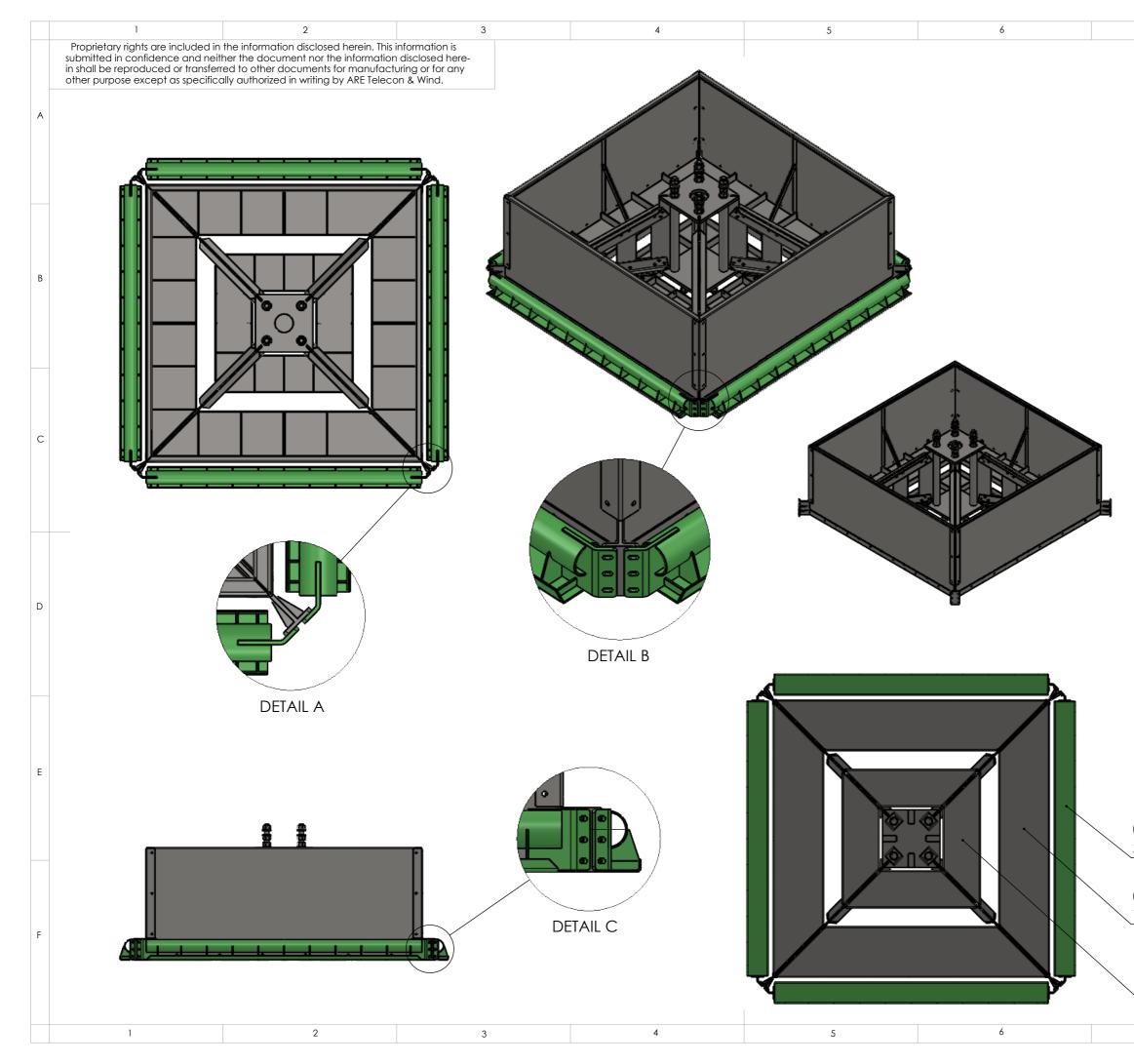
D

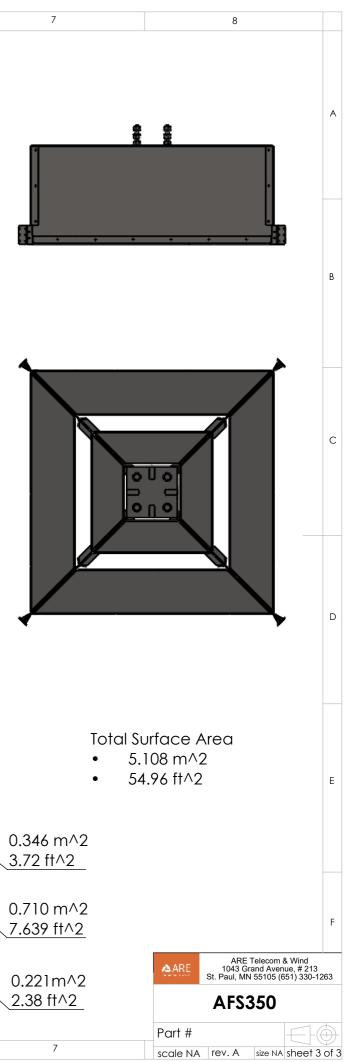
|               | CAD-gene<br>do not ma |     |         | ARE                                                                                                                    |        |          | nue, # 213 | 263  |  |  |
|---------------|-----------------------|-----|---------|------------------------------------------------------------------------------------------------------------------------|--------|----------|------------|------|--|--|
| lb)           | APPROV                | ALS | DATE    | 12n                                                                                                                    | n 4SF  | E A F    | \$350      |      |  |  |
| lb)<br>67 kg) | DRAWN MC              | GC  | 9/16/20 |                                                                                                                        | 15t    |          |            |      |  |  |
|               | CHECKED               |     |         |                                                                                                                        | 1 31   | <b>J</b> |            |      |  |  |
| s             | RESP ENG              |     |         | CAD file : AFS350 17_25m 3SF revA5<br>Details and dimensions<br>not shown on this drawing<br>can be found in CAD file. |        |          |            |      |  |  |
| s             | MFG ENG               |     |         |                                                                                                                        |        |          |            |      |  |  |
| WING          | QUAL ENG              |     |         |                                                                                                                        | rev. A |          | sheet 1    | of 3 |  |  |



|        |          |           | AFS3    | 50 BOITS, NUTS     | & wasners (a  | other equi | ivalent grades ac | ceptable) |             |           |
|--------|----------|-----------|---------|--------------------|---------------|------------|-------------------|-----------|-------------|-----------|
| #      | Unit     | Bolt Size | Length  | Width Across Flats | Thread Length | Grade      | Coating           | Nut Qty.  | Washer Qty. | Bolt Qty. |
| <br>14 | Metric   | M12x1.75  | 30mm    | 18mm               | Full Thread   | 8.8        | Hot Dip Galv.     | 56        | 112         | 56        |
| 14     | Imperial | 1/2-13    | 1 3/16" | 7/8"               | Full Thread   | A325       | Hot Dip Galv.     | 56        | 112         | 56        |
| 15     | Metric   | M12x1.75  | 60mm    | 18mm               | Full Thread   | 8.8        | Hot Dip Galv.     | 24        | 48          | 24        |
| 15     | Imperial | 1/2-13    | 2 3/8"  | 7/8"               | Full Thread   | A325       | Hot Dip Galv.     | 24        | 48          | 24        |
| 16     | Metric   | M20x2.5   | 55mm    | 30mm               | Full Thread   | 8.8        | Hot Dip Galv.     | 72        | 144         | 72        |
| 16     | Imperial | 3/4-10    | 2 3/16" | 1 1/8"             | Full Thread   | A325       | Hot Dip Galv.     | 72        | 144         | 72        |
| 17     | Metric   | M36x2.5   | 1000mm  | 55mm               | 300mm         | 8.8        | Hot Dip Galv.     | 12        | 16          | 4         |
| 17     | Imperial | 1 1/2-6   | 39"     | 2 3/16"            | 12"           | A325       | Hot Dip Galv.     | 12        | 16          | 4         |
|        | 1        |           |         | 2                  | 3             |            | 4                 |           | 5           |           |

ARE Telecom & Wind 413 Wacouta St. Suite #440 St Paul, MN 55101 (651) 330 1263 CAD-generated drawing A AR do not manually update Does not include anchor bolts, templates or flange bolts APPROVALS DATE AFS350 BOM DRAWN MGC 9/16/20 CHECKED CAD file RESP ENG MATERIAL See Notes Details and dimensions MFG ENG not shown on this drawing can be found in CAD file FINISH See Notes


DO NOT SCALE DRAWING QUALENG scale NA rev. A size NA 2 of 3


| 7         |                              | 8                |   |
|-----------|------------------------------|------------------|---|
| REV.<br>A | DESCRIPTIC<br>initial releas |                  |   |
| f Materia | ls                           |                  |   |
|           | QTY.                         | Weight (kg/ lbs) | A |
|           | 4                            | 2.5/ 5.5         |   |
|           | 8                            | 5.4/ 11.9        |   |
|           | 8                            | 0.78/ 1.72       |   |
|           | 4                            | 50.5/111.1       |   |
|           | 4                            | 27.3/ 60.1       |   |
|           | 4                            | 10.8/ 23.8       |   |
|           | 4                            | 58/ 127.6        | В |
|           | 4                            | 47/103.4         |   |
|           | 4                            | 18.3/ 40.3       |   |
|           | 1                            | 47.11/ 103.6     |   |
|           | 1                            | 37.7/ 83         |   |
|           | 8                            | 4.7/ 10.34       |   |
|           | 4                            | 20.6/ 45.32      |   |
|           |                              |                  |   |

The foundation design is based upon an ultimate bearing pressure

D

C







| Report Date:                                    | October 5, 2020                                                                                                                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Client:                                         | ARE Telecom Incorporated<br>1043 Grand Ave #213<br>St. Paul, MN 55105<br>Attn: Dion Johnson<br>(651) 724-1322<br>djohnson@aretelecom.com |
| Structure:<br>Location:<br>Latitude, Longitude: | Proposed 12m (39.36-ft) Pole<br>Lake Bathurst, New South Wales, Australia<br>-35.062513°, 149.644149°                                    |

PJF Project: A00020-0319.003.7205

Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the tower stress level.

#### **Proposed Appurtenance Loads:**

The structure was analyzed with the proposed loading configuration shown in Table 1 of this report.

#### Summary of Analysis Results:

Proposed Structure:Pass - 45.4%Proposed Foundation:Pass - 96.9%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and ARE Telecom Incorporated. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

mm

Richard W. Hoffman, P.E. Project Manager rhoffman@pauljford.com

Columbus 250 E Broad St, Suite 600 Columbus, OH 43215 Phone 614.221.6679 Orlando 1801 Lee Rd, Suite 230 Winter Park, FL 32789 Phone 407.898.9039

# TABLE OF CONTENTS

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

#### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary) Table 4 – Tower Component Stresses vs. Capacity 4.1) Recommendations

#### 5) APPENDIX A

CheckPole Output

#### 6) APPENDIX B

Additional Calculations

### 7) APPENDIX C

Pole and Foundation Drawing

#### 1) INTRODUCTION

This structure is a 39.36 ft Monopole tower designed by ARE Wind and Telecom.

#### 2) ANALYSIS CRITERIA

| Pole Design Reference:<br>Importance Level: | AS/NZS 1170<br>2 |
|---------------------------------------------|------------------|
| Life:                                       | 50 years         |
| Region:                                     | A3               |
| Ultimate ARI:                               | 500 years        |
| Ultimate VR:                                | 45 m/s           |
| Ice VR:                                     | 34 m/s           |
| Serviceability VR:                          | 37 m/s           |

#### Table 1 - Proposed Equipment Configuration

| Mounting<br>Level (ft) | Elovation | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                                 | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) | Note |
|------------------------|-----------|--------------------------|-------------------------|-----------------------------------------------|----------------------------|---------------------------|------|
| 37.7                   | 37.7      | 4                        | Cambium                 | ePMP 2000 Smart Antenna                       | 1                          | 7/8                       |      |
| 51.1 51.1              |           | 4                        | tower mounts            | 3-ft Straight Arm Mounts                      | 4                          | 110                       | -    |
| 31.2                   | 31.2      | 2                        | Cambium                 | 2-ft Standard Microwave Dish<br>on Mount Pipe | 2                          | CAT 5e                    | -    |

#### 3) ANALYSIS PROCEDURE

#### Table 2 - Documents Provided

| Document                       | Remarks                            | Reference | Source      |
|--------------------------------|------------------------------------|-----------|-------------|
| POLE AND<br>FOUNDATION DRAWING | 17.25m 3SF AFS350, Rev A5, 7/25/20 | -         | ARE TELECOM |

#### 3.1) Analysis Method

CheckPole (version 6.3.3), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

The pole flange plates, base plate and anchor rods were evaluated using ANSI/TIA-222-H, "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures" methodology.

The foundation truss support arm was analyzed using RISA 3D, a commercially available analysis software package. The adequacy of the members making up the foundation truss support arm were checked using ANSI/AISC 360-16, "Specification for Structural Steel Buildings".

#### 3.2) Assumptions

- 1) Tower and structures have been properly maintained.
- 2) The configuration of antennas, mounts and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) For the purposes of this analysis, all coax is assumed to be run inside of the pole and thus shielded from the wind.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

| Section<br>No. | Elevation (ft) | Component Type | Size                 | Critical<br>Element | P (lb)    | %<br>Capacity | Pass / Fail |
|----------------|----------------|----------------|----------------------|---------------------|-----------|---------------|-------------|
| L1             | 39.36 - 22.296 | Pole           | TP9.833x7.876x0.1969 | 1                   | -         | 18.7          | Pass        |
| L2             | 22.296 - 3.4   | Pole           | TP12x9.833x0.1969    | 2                   | -         | 42.5          | Pass        |
|                |                |                |                      |                     |           | Summary       |             |
|                |                |                |                      |                     | Pole (L2) | 42.5          | Pass        |
|                |                |                |                      |                     | Rating =  | 42.5          | Pass        |

#### Table 3 - Section Capacity (Summary)

#### Table 4 - Tower Component Stresses vs. Capacity

| Notes | Component                           | Elevation (ft) | % Capacity | Pass / Fail |
|-------|-------------------------------------|----------------|------------|-------------|
| 1     | Flange Connection                   | 22.3           | 38.6       | Pass        |
| 1     | Anchor Rods                         | 3.4            | 45.4       | Pass        |
| 1     | Base Plate                          | 3.4            | 34.3       | Pass        |
| 1     | Base Foundation<br>Structural       | 0              | 78.6       | Pass        |
| 1     | Base Foundation<br>Soil Interaction | 0              | 96.9       | Pass        |

| Structure Rating (max from all components) = | 96.9% |  |
|----------------------------------------------|-------|--|
| Structure Rating (max from an components) –  | 96.9% |  |

Notes:

1) See additional documentation in "Appendix B– Additional Calculations" for calculations supporting the % capacity consumed.

#### 4.1) Recommendations

The pole and its foundation have sufficient capacity to carry the proposed load configuration. Install the pole and foundation as directed by ARE Telecom.

# APPENDIX A

# CHECKPOLE OUTPUT

tnxTower Report - version 8.0.7.5

| NUMBER 1000       NUMBER 1000         NUMBER 1000       NUMBER 10000         NUMBER 1000       NUMBER 10000         NUMBER 10000       NUMBER 10000         NUMBER 10000       NUMBER 10000         NUMBER 10000       NUMBER 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOI                                                                 | NOPOLE DATA                                                                |                                                                                    |                                                                |              |             |           |        |       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|-------------|-----------|--------|-------|--|
| SMT         ID       UK010       10       0.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHAPE:<br>SEGMENTS<br>SURFACE:<br>TOTAL LE<br>ELASTIC I<br>DENSITY: | :<br>NGTH:<br>MODULUS:                                                     | 8-SIDED<br>3<br>GALVANIZED<br>12000 mm (TJ<br>200000 MPa<br>7850 kg/m <sup>3</sup> | IP RL @ 12073                                                  | mm)          |             |           |        |       |  |
| 1         202 m         202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHAFT                                                               |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| 0 3 257 m 246.7 m 246.4 m 25.0 m 440 % 0 5.0 m/n 26 kg 440 % 1 26 m/n 26 kg 450 % 0 5.0 | ID                                                                  | LENGTH                                                                     | TOP ODAF                                                                           | BASE ODAF                                                      | t            | fy          | TAPER     | MASS   | JOINT |  |
| ACCESS           TVF:         NOE           CONFIDUATION:         CONFIDUATION:           CONFIDUATION:         CONFIDUATION:           CONFIDUATION:         CONFIDUATION:           CONFIDUATION:         CONFIDUATION:           CONFIDUATION:         CONFIDUATION:           CONFIDUATION:         CONFIDUATION:           VIELDS: FUELS (FUEL)         SPE           VIELDS: FUEL         NOE           CONFIDUATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02                                                                  | 5761 mm                                                                    | 249.7 mm                                                                           | 304.8 mm                                                       | 5.0 mm       | 448 MPa     | 9.56 mm/m | 204 kg |       |  |
| <pre>TVT:: DATE CONSISTS ACCOUNTING: CISUADA CISA CISA CISA CISA CISA CISA CISA CIS</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < ST                                                                | RUCTURE BAS                                                                | E@RL0mm (4                                                                         | ABOVE GROUND)                                                  | >            |             |           |        |       |  |
| CONNECTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACCESS                                                              |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| AGONE MOLTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYPE                                                                | :                                                                          | NONE                                                                               |                                                                |              |             |           |        |       |  |
| CONFIGURATION:         CHICUAR           CONFIGURATION:         400 mm           PTCTC LEXE DAME EX         200 mm           VILLD STRESS (Fug):         200 mm           VIELD STRESS (Fug):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONNECTI                                                            | ONS                                                                        |                                                                                    |                                                                |              |             |           |        |       |  |
| UNATIVE:         AS mo           QUARTIN:         AS mo           PREDENT:         AS mo           VIELD:         AS mo           VIELD:         AS mo           VIELD:         CARLAND           VIELD:         NONE           GARS:         STA &           CONFIGURATION:         NONE           GARS:         STA &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANCH                                                                | OR BOLTS                                                                   |                                                                                    |                                                                |              |             |           |        |       |  |
| SNAPP:         CONTRIANTON:         CANANCE STREES           MACHING RING         NORE           OUTERDATION:         NORE           DESCIS         CONTERDATION:           CONTERDATION:         NORE           DESCIS         CONTERDATION:           CONTERDATION:         NORE           DESCIN         Stressence:           CONTERDATION:         NORE           DESCIN         Stressence:           LATIUN:         :35.661200           DESCIN         Stressence:           REGONE:         :35.961200           ULTANTE:         :35.961200           VUTING:         :35.961200           VUTING:         :35.961200           ULTANTE:         :35.961200           VUTING:         :35.961200           VUTING:         :35.961200           · Calculated sper AS/NZS 1170.2 Section 3.2.           ULTANTE:         :37.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | DIAMETER:<br>QUANTITY:<br>PITCH CIRCL<br>EMBEDMENT:<br>YIELD STRES         | E DIAMETER:<br>S (fya):                                                            | M36<br>4<br>400 mm<br>675 mm<br>379 MPa                        |              |             |           |        |       |  |
| viD:         CIRCULAR           wiD:         FILLET           viD:         SP:           viD:         SP:           viD:         SP:           viD:         SP:           viD:         SP:           viE:         SP:           viE:         SP:           corr:         MORE           corr:         Stresse:           corr:         Stresse:           corr:         Stresse:           corr:         Stresse:           corr:         Stresse:           more:         Stresse:           more:         Stresse:           more:         Strese:           sorr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BASE                                                                | PLATE                                                                      |                                                                                    |                                                                |              |             |           |        |       |  |
| CONFIGURATION:         NONE           GUSSETS         CONFIGURATION:         NONE           BEARING         TYPE:         LEVELLING NUTS           OVP:         38 mm         Samm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | VOID:<br>WELD:<br>WIDTH (Wp):<br>VOID DIAMET<br>THICKNESS (<br>YIELD STRES | ER (dv):<br>tp):                                                                   | CIRCULAR<br>FILLET<br>470 mm<br>200 mm<br>35 mm<br>344 MPa (AS | 5/NZS 3678 T | able 9)     |           |        |       |  |
| GUSSETS         CNRFIGURATION:         NOME           FEARING         TYPE:         LEVELLING NUTS           GAP:         38 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BACK                                                                | ING RING                                                                   |                                                                                    |                                                                |              |             |           |        |       |  |
| CNNFIGURATION:         NOME           BEARING         TYPE::         LEVELLING NUTS           GAP:         38 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | CONFIGURATI                                                                | ON:                                                                                | NONE                                                           |              |             |           |        |       |  |
| BEARING           TYPE:         LEVELLING NUTS           GAP:         38 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GUSS                                                                | ETS                                                                        |                                                                                    |                                                                |              |             |           |        |       |  |
| TYPE:         LEVELLING NUTS           GAP:         38 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | CONFIGURATI                                                                | ON:                                                                                | NONE                                                           |              |             |           |        |       |  |
| GAP:         38 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BEAR                                                                | ING                                                                        |                                                                                    |                                                                |              |             |           |        |       |  |
| LOCATION<br>LITUPOE: 35.062500<br>LITUPOE: 49.64100<br>ELEVATION: 818.00 m<br>DESIDENT<br>EFFERENCE: VS<br>So YEARS<br>NUTURATE: So YEARS<br>NUTURATE: So YEARS<br>REGIONAL WIND SPEED (VR)<br>• 0.10LUTATE: 43 m/s<br>REGIONAL WIND SPEED (VR)<br>• 0.10LUTATE: 43 m/s<br>N 0.85 m/s<br>N 0.85 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                            |                                                                                    |                                                                | IUTS         |             |           |        |       |  |
| LATITUDE :: 35.602500<br>ELEVATION :: 139.642100<br>ELEVATION :: 139.642100<br>ELEVATION :: 139.60 ::<br>DESIGN:<br>MFORTANCE LEVEL :: 25 YEARS<br>WINU<br>METER: :: 50 YEARS<br>WINU<br>MEGIONAL WIND SPEED (VR)<br>• Calculated as per AS/NZS 1170.2 Section 3.2.<br>ULTIMATE :: 45 m/s<br>ICE: :: 34 m/s<br>CICE: 34 m/s<br>DIRECTION MULTIPLIER (Md)<br>• Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>WIND MC<br>NE 0.85<br>NE 0.80<br>NE 0.85<br>NE 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SI                                                                  | TE DATA                                                                    |                                                                                    |                                                                |              |             |           |        |       |  |
| LATITUDE :: 35.662500<br>LUCNGTUDE :: 149.643100<br>DESION<br>REFERENCE :: AS/NZS 1170<br>MPORTANCE LEVEL :: So YEARS<br>NIND<br>REGIONAL WIND SPEED (VR)<br>• Calculated as per AS/NZS 1170.2 Section 3.2.<br>ULTIMATE :: 45 m/s<br>LCE :: 34 m/s<br>S<br>DIRECTION WULTIPLIER (MO)<br>• Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>NIND<br>NE 0.85<br>NE 0.80<br>NE 0.85<br>NE 0.80<br>NE 0.85<br>NE 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LATI<br>LONG                                                        | TUDE: -                                                                    | 49.644100                                                                          |                                                                |              |             |           |        |       |  |
| IMPORTANCE LEVEL:       2         LIFE:       50 YEARS         WIND       REGION:       A3         REGIONAL WIND SPEED (VR)       • Calculated as per AS/NZS 1170.2 Section 3.2.         ULTIMATE:       45 m/s         ICE:       34 m/s         SERVICEABILITY:       37 m/s         DIRECTION MULTIPLIER (Md)       • calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.         WIND       Md         N       0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESIGN                                                              |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| REGION:       A3         ULTIMATE ARI:       S00 YEARS         REGIONAL WIND SPEED (VR)       • Calculated as per AS/NZ5 1170.2 Section 3.2.         ULTIMATE:       45 m/s         SERVICEABILITY:       37 m/s         DIRECTION MULTIPLIER (Md)       • Calculated for Region A3 as per AS/NZ5 1170.2 Section 3.3.         MIND       Md         N       0.85         NE       0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IMPO                                                                | RTANCE LEVE                                                                | L: 2                                                                               |                                                                |              |             |           |        |       |  |
| ULTIMATE ARI: 500 YEARS<br>REGIONAL WIND SPEED (VR)<br>• Calculated as per AS/NZS 1170.2 Section 3.2.<br>ULTIMATE: 45 m/s<br>CE: 34 m/s<br>SERVICEABILITY: 37 m/s<br>DIRECTION MULTIPLIER (Md)<br>• Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>WIND Md<br>N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIND                                                                |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| <ul> <li>Calculated as per AS/NZS 1170.2 Section 3.2.</li> <li>ULTIMATE: 45 m/s<br/>SERVICEABILITY: 37 m/s</li> <li>DIRECTION MULTIPLIER (Md)         <ul> <li>Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.</li> <li>WIND Md</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                            |                                                                                    |                                                                |              |             |           |        |       |  |
| ULTIMATE: 45 m/s<br>ICE: 34 m/s<br>SERVICEABILITY: 37 m/s<br>DIRECTION MULTIPLIER (Md)<br>• Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>WIND Md<br>N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REGI                                                                | ONAL WIND S                                                                | PEED (VR)                                                                          |                                                                |              |             |           |        |       |  |
| ICE: 34 m/s<br>SERVICEABILITY: 37 m/s<br>DIRECTION MULTIPLIER (Md)<br>• Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>WIND Md<br>N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     | • Calculate                                                                | d as per AS/NZ                                                                     | ZS 1170.2 Sect                                                 | ion 3.2.     |             |           |        |       |  |
| • Calculated for Region A3 as per AS/NZS 1170.2 Section 3.3.<br>WIND Md<br>N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | ICE:                                                                       | 34 m/s                                                                             | 5                                                              |              |             |           |        |       |  |
| WIND Md<br>N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIRE                                                                | CTION MULTI                                                                | PLIER (Md)                                                                         |                                                                |              |             |           |        |       |  |
| N 0.85<br>NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | • Calculate                                                                | d for Region A                                                                     | A3 as per AS/N                                                 | NZS 1170.2 S | ection 3.3. |           |        |       |  |
| NE 0.80<br>E 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                   | WIND Md                                                                    |                                                                                    |                                                                |              |             |           |        |       |  |
| SE 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l                                                                   | NE 0.8<br>E 0.8                                                            | 0<br>0                                                                             |                                                                |              |             |           |        |       |  |

SW 0.85 W 0.90 NW 1.00

TERRAIN/HEIGHT MULTIPLIER (Mz,cat)

• Calculated using averaging as per AS/NZS 1170.2 Section 4.2.3 and varies with height.

NORTH WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

NORTH EAST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

EAST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

SOUTH EAST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m SOUTH WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

SOUTH WEST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

WEST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

NORTH WEST WIND: Mz,cat = 1.0207 (TC 2.00)

ZONE 1: TC 2 to 741.46 m

#### SHIELDING MULTIPLIER (Ms)

• Calculated as per AS/NZS 1170.2 Section 4.3 and varies with height.

| NORTH WIND:      | Ms = 1.0 |
|------------------|----------|
| NORTH EAST WIND: | Ms = 1.0 |
| EAST WIND:       | Ms = 1.0 |
| SOUTH EAST WIND: | Ms = 1.0 |
| SOUTH WIND:      | Ms = 1.0 |
| SOUTH WEST WIND: | Ms = 1.0 |
| WEST WIND:       | Ms = 1.0 |
| NORTH WEST WIND: | Ms = 1.0 |

#### TOPOGRAPHIC MULTIPLIER (Mt)

• Calculated as per AS/NZS 1170.2 Section 4.4 and varies with height.

• Water Surface has been defined @ RL 0.00 m.

| WIND | CRITICAL | TOPOGRAPHY | н        | Lu       | x        | SHIELDING | Mh              | Mt              |
|------|----------|------------|----------|----------|----------|-----------|-----------------|-----------------|
| N    | NNE      | Escarpment | 139.00 m | 614.29 m | 25.00 m  | -         | 1.1776 → 1.1684 | 1.1776 → 1.1684 |
| NE   | ENE      | Ridge      | 138.00 m | 330.00 m | 0.00 m   | -         | 1.3319 → 1.3013 | 1.3319 → 1.3013 |
| E    | ESE      | Ridge      | 135.50 m | 261.46 m | 0.00 m   | -         | 1.4113 → 1.3645 | 1.4113 → 1.3645 |
| SE   | ESE      | Ridge      | 135.50 m | 261.46 m | 0.00 m   | -         | 1.4113 → 1.3645 | 1.4113 → 1.3645 |
| S    | SSE      | Ridge      | 131.00 m | 491.67 m | -25.00 m | -         | 1.2040 → 1.1910 | 1.2040 → 1.1910 |
| SW   | WSW      | Ridge      | 100.50 m | 280.68 m | 0.00 m   | -         | 1.2842 → 1.2538 | 1.2842 → 1.2538 |
| W    | WSW      | Ridge      | 100.50 m | 280.68 m | 0.00 m   | -         | 1.2842 → 1.2538 | 1.2842 → 1.2538 |
| NW   | WNW      | Ridge      | 87.00 m  | 300.00 m | 25.00 m  | -         | 1.2168 → 1.1950 | 1.2168 → 1.1950 |

ICE

REGION: N/A

----- Shaft Drag -----

• Monopole Shaft Drag Factor (Cd) has been calculated as per AS/NZS 1170.2 Table E4.

----- AREA LOADS -----

LOAD A01: ePMP 2000 Smart Antenna on 3-ft (0.91m) Straight Arm Mount

| CL RL:<br>MASS:<br>OFFSET: | 11.50 m<br>29.6 kg<br>914 mm @                                    | 0°                            |                               |
|----------------------------|-------------------------------------------------------------------|-------------------------------|-------------------------------|
| WIND                       | EPA                                                               | Wu                            | Ws                            |
| N<br>NE<br>E               | 0.24 m <sup>2</sup><br>0.24 m <sup>2</sup><br>0.24 m <sup>2</sup> | 0.30 kN<br>0.33 kN<br>0.36 kN | 0.20 kN<br>0.22 kN<br>0.24 kN |

 SE
 0.24 m²
 0.36 kN
 0.24 kN

 S
 0.24 m²
 0.27 kN
 0.18 kN

 SW
 0.24 m²
 0.34 kN
 0.23 kN

 W
 0.24 m²
 0.34 kN
 0.26 kN

 NW
 0.24 m²
 0.34 kN
 0.26 kN

LOAD A02: ePMP 2000 Smart Antenna on 3-ft (0.91m) Straight Arm Mount

| CL RL:<br>MASS:<br>OFFSET: | 11.50 m<br>29.6 kg<br>914 mm @             | 90°                |                    |
|----------------------------|--------------------------------------------|--------------------|--------------------|
| WIND                       | EPA                                        | Wu                 | Ws                 |
| N<br>NE                    | 0.24 m <sup>2</sup><br>0.24 m <sup>2</sup> | 0.30 kN<br>0.33 kN | 0.20 kN<br>0.22 kN |
| E                          | 0.24 m <sup>2</sup>                        | 0.36 kN            | 0.24 kN            |
| SE                         | 0.24 m²                                    | 0.36 kN            | 0.24 kN            |
| S                          | 0.24 m²                                    | 0.27 kN            | 0.18 kN            |
| SW                         | 0.24 m²                                    | 0.34 kN            | 0.23 kN            |

 S
 0.24 m²
 0.27 kN
 0.18 kN

 SW
 0.24 m²
 0.34 kN
 0.23 kN

 W
 0.24 m²
 0.38 kN
 0.26 kN

 NW
 0.24 m²
 0.43 kN
 0.26 kN

LOAD A03: ePMP 2000 Smart Antenna on 3-ft (0.91m) Straight Arm Mount

| CL RL:<br>MASS:<br>OFFSET:     | 11.50 m<br>29.6 kg<br>914 mm @                                                                                                                                                       | 180°                                                                                 |                                                                                      |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| WIND                           | EPA                                                                                                                                                                                  | Wu                                                                                   | Ws                                                                                   |
| N<br>NE<br>SE<br>SW<br>W<br>NW | 0.24 m <sup>2</sup><br>0.24 m <sup>2</sup> | 0.30 kN<br>0.33 kN<br>0.36 kN<br>0.36 kN<br>0.27 kN<br>0.34 kN<br>0.38 kN<br>0.43 kN | 0.20 kN<br>0.22 kN<br>0.24 kN<br>0.24 kN<br>0.18 kN<br>0.23 kN<br>0.26 kN<br>0.29 kN |

LOAD A04: ePMP 2000 Smart Antenna on 3-ft (0.91m) Straight Arm Mount

kN kN kN kN kN kN

kΝ

Ws

| CL RL:<br>MASS:<br>OFFSET: | 11.50 m<br>29.6 kg<br>914 mm @                                                                                                         | 270°                                                           |                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|
| WIND                       | EPA                                                                                                                                    | Wu                                                             | Ws                                           |
| N<br>NE<br>E<br>SE<br>S    | 0.24 m <sup>2</sup><br>0.24 m <sup>2</sup><br>0.24 m <sup>2</sup><br>0.24 m <sup>2</sup><br>0.24 m <sup>2</sup><br>0.24 m <sup>2</sup> | 0.30 kN<br>0.33 kN<br>0.36 kN<br>0.36 kN<br>0.27 kN<br>0.34 kN | 0.20<br>0.22<br>0.24<br>0.24<br>0.18<br>0.23 |
| W<br>NW                    | 0.24 m <sup>2</sup><br>0.24 m <sup>2</sup>                                                                                             | 0.38 kN<br>0.43 kN                                             | 0.25                                         |

LOAD A05: 2-ft Standard MW on Mount Pipe

CL RL: 9.50 m MASS: 36.0 kg OFFSET: 153 mm @ 0° WIND EPA Wu N 0.77 m<sup>2</sup> 0.91 kN

| N  | 0.77 m² | 0.91 kN | 0.61 kN |
|----|---------|---------|---------|
| NE | 0.77 m² | 1.01 kN | 0.68 kN |
| E  | 0.77 m² | 1.11 kN | 0.75 kN |
| SE | 0.77 m² | 1.11 kN | 0.75 kN |
| S  | 0.77 m² | 0.84 kN | 0.57 kN |
| SW | 0.77 m² | 1.05 kN | 0.71 kN |
| W  | 0.77 m² | 1.18 kN | 0.80 kN |
| NW | 0.77 m² | 1.32 kN | 0.89 kN |

LOAD A06: 2-ft Standard MW on Mount Pipe

| CL RL:<br>MASS:<br>OFFSET:    | 9.50 m<br>36.0 kg<br>153 mm @                                                                                                                                                        | 180°                                                                                 |                                                                                      |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| WIND                          | EPA                                                                                                                                                                                  | Wu                                                                                   | Ws                                                                                   |
| N<br>E<br>SE<br>SW<br>W<br>NW | 0.77 m <sup>2</sup><br>0.77 m <sup>2</sup> | 0.91 kN<br>1.01 kN<br>1.11 kN<br>1.11 kN<br>0.84 kN<br>1.05 kN<br>1.18 kN<br>1.32 kN | 0.61 kN<br>0.68 kN<br>0.75 kN<br>0.75 kN<br>0.57 kN<br>0.71 kN<br>0.80 kN<br>0.89 kN |

• Elastic Critical Buckling Load (Ncr) is 147.12 kN.

----- ANALYSIS -----

- Minimum First Mode Natural Frequency (n1) is 1.4539 Hz for 1.2 G + Wu.

- Maximum Ultimate Moment (M\*) is 84.85 kNm  ${\it @}$  RL 73 mm under North West Wind for 1.2 G + Wu.

• Maximum Ultimate Torsion (T\*) is 0.00 kNm.

• Maximum Ultimate Shear (V\*) is 11.13 kN @ RL 73 mm under North West Wind for 1.2 G + Wu.

• Maximum Ultimate Axial (N\*) is 6.87 kN @ RL 73 mm under North Wind for 1.2 G + Wu.

- Maximum Serviceability Rotation (0\*) is 1.6504° @ RL 12073 mm under North West Wind for G + Ws.

- Maximum Serviceability Deflection ( $\delta^*)$  is 0.2322 m @ RL 12073 mm under North West Wind for G + Ws.

• Ratio of attachment area to shaft area in top third exceeds 10% (315.78%), such that cross-wind response can be ignored as per CSA S37 Annex N.2.1.

----- SHAFT DESIGN (AS/NZS 4600) ------

• Monopole PASSES with a critical utilisation of [49.20%] @ RL 73 mm under North West Wind for 1.2 G + Wu.

----- CONNECTION DESIGN (AS 4100) ------

• Anchor Bolts PASS with a critical utilisation of [63.11%] @ 45° under North West Wind for 1.2 G + Wu.

• Base Plate FAILS under the following conditions:

| LOAD | CASE | 01: | 1.2 | G | + | Wu |
|------|------|-----|-----|---|---|----|
|------|------|-----|-----|---|---|----|

| WIND      | ANGLE      | FACE     | BOLT M*               | EFF. WIDTH         | STRESS                   | UTILISATION            |
|-----------|------------|----------|-----------------------|--------------------|--------------------------|------------------------|
| W<br>NW   | 45°<br>45° | 02<br>02 | 9.08 kNm<br>10.15 kNm | 95.2 mm<br>95.2 mm | 311.57 MPa<br>348.20 MPa | [100.64%]<br>[112.47%] |
| LOAD CASE | 02: 0.9 G  | + Wu     |                       |                    |                          |                        |
| WIND      | ANGLE      | FACE     | BOLT M*               | EFF. WIDTH         | STRESS                   | UTILISATION            |
| W<br>NW   | 45°<br>45° | 02<br>02 | 9.03 kNm<br>10.10 kNm | 95.2 mm<br>95.2 mm | 309.79 MPa<br>346.30 MPa | [100.06%]<br>[111.86%] |

----- FATIGUE DESIGN (LRFD LTS-1) ------

MEAN WIND SPEED: 4.2 m/s

• Based on measurements recorded 29.37 km away (-34.8085, 149.7311) at Goulburn Airport AWS (070330) between 1990-2019 and sourced from BOM.

• AASHTO LRFD LTS-1 Section 11.7.2 does not require monopoles shorter than 55 ft (16.76 m) to be designed for fatigue, such that these results are informative only.

• Infinite Life criteria not met under the following conditions:

LOAD CASE 04: Wf

NORTH WIND

|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|-----|-----------------------------|-------------------------------------|----------------------------------------|-----------------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------|-------------------------------------|
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| NOR | TH EAST WINE                | )                                   |                                        |                                                     |                                     |                                        |                                                         |                                     |
|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| EAS | T WIND                      |                                     |                                        |                                                     |                                     |                                        |                                                         |                                     |
|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| SOU | TH EAST WIND                | )                                   |                                        |                                                     |                                     |                                        |                                                         |                                     |
|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| SOU | ITH WIND                    |                                     |                                        |                                                     |                                     |                                        |                                                         |                                     |
|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| SOU | ITH WEST WIND               | )                                   |                                        |                                                     |                                     |                                        |                                                         |                                     |
|     | RL                          | MOMENT                              | DETAIL                                 | DESCRIPTION                                         | STRESS                              | INFINITE LIMIT                         | FINITE LIFE                                             | UTILISATION                         |
|     | 1110 mm<br>1110 mm<br>73 mm | 12.35 kNm<br>12.35 kNm<br>14.28 kNm | DETAIL 4.3<br>DETAIL 4.3<br>DETAIL 5.4 | WELDED JOINT<br>WELDED JOINT<br>FILLET WELDED PLATE | 31.89 MPa<br>31.89 MPa<br>36.88 MPa | 31 MPa<br>31 MPa<br>18 MPa (Ki = 7.33) | 263.99 years<br>263.99 years<br>60.53 years (Kf = 3.50) | [102.87%]<br>[102.87%]<br>[204.89%] |
| WES | T WIND                      |                                     |                                        |                                                     |                                     |                                        |                                                         |                                     |

| RL            | MOMENT              | DETAIL     | DESCRIPTION                 | STRESS              | INFINITE LIMIT           | FINITE LIFE                 | UTILISATIO |
|---------------|---------------------|------------|-----------------------------|---------------------|--------------------------|-----------------------------|------------|
| 1110 mm       | 12.35 kNm           | DETAIL 4.3 | WELDED JOINT                | 31.89 MPa           | 31 MPa                   | 263.99 years                | [102.87%]  |
| 1110 mm       | 12.35 kNm           | DETAIL 4.3 | WELDED JOINT                | 31.89 MPa           | 31 MPa                   | 263.99 years                | [102.87%]  |
| 73 mm         | 14.28 kNm           | DETAIL 5.4 | FILLET WELDED PLATE         | 36.88 MPa           | 18 MPa (Ki = 7.33)       | 60.53 years (Kf = 3.50)     | [204.89%]  |
|               | D                   |            |                             |                     |                          |                             |            |
|               |                     | DETAIL     | DESCRIPTION                 | STRESS              | INFINITE LIMIT           | FINITE LIFE                 |            |
| H WEST WIN    | MOMENT              |            | DESCRIPTION                 | STRESS              | INFINITE LIMIT           | FINITE LIFE                 | UTILISATIO |
| RL<br>1110 mm | MOMENT<br>12.35 kNm | DETAIL 4.3 | DESCRIPTION<br>WELDED JOINT | STRESS<br>31.89 MPa | INFINITE LIMIT<br>31 MPa | FINITE LIFE<br>263.99 years | UTILISATIC |
| RL            | MOMENT              |            | DESCRIPTION                 | STRESS              | INFINITE LIMIT           | FINITE LIFE                 | UTILISATIO |

----- REFERENCES ------

[1] American Association of State Highway and Transportation Officials (AASHTO) 2019, 'LRFD LTS-1 LRFD Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals'.

[2] American Society of Civil Engineers (ASCE) 2012, 'ASCE/SEI 48-11 Design of Steel Transmission Pole Structures'.

[3] American Society of Civil Engineers (ASCE) 2014, 'ASCE/SEI 7-10 Minimum Design Loads and Associated Criteria for Buildings and Other Structures'.

[4] American Society of Civil Engineers (ASCE) 2017, 'ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures'.

[5] American Institute of Steel Construction (AISC) 2005, 'ANSI/AISC 360-05 Specification for Structural Steel Buildings'.

[6] Australian Institute of Steel Construction (AISC) 2004, 'Design Capacity Tables for Structural Steel Volume 2: Hollow Sections', 2nd edn.

[7] Australasian Wind Engineering Society (AWES) 2012, 'Wind Loadings Handbook for Australia and New Zealand Background to AS/NZS 1170.2 Wind Actions'.

[8] British Standards Institute 2009, 'BS EN 1993-1-1-2005 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings'.

[9] British Standards Institute 2009, 'BS EN 1993-1-8-2005 Eurocode 3: Design of steel structures - Part 1-8: Design of joints'.

[10] British Standards Institute 2009, 'BS EN 1993-1-9-2005 Eurocode 3: Design of steel structures - Part 1-9: Fatigue'.

[11] British Standards Institute 2008, 'BS EN 1993-3-2-2006 Eurocode 3: Design of steel structures - Part 3-2: Towers, masts and chimneys - Chimneys'.

[12] British Standards Institute 2008, 'BS EN 1991-1-4:2005 Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions'.

[13] British Standards Institute 2013, 'BS EN 40-3-3:2013 Lighting columns Part 3-3 Design and verification - Verification by calculation'.

[14] CommScope 2018, 'Wind load testing methodology for measuring drag coefficient of aerodynamically efficient base station antenna profiles'.

[15] CSA Group 2014, 'CSA S16-14 Design of steel structures'.

[16] CSA Group 2018, 'CSA S37-18 Antennas, towers, and antenna-supporting structures'.

[17] Giosan, I, 'Vortex Shedding Induced Loads on Free Standing Structures'.

[18] Hansen, S 2007, 'Vortex-induced vibrations of structures'.

[19] Holmes, JD 2015, 'Wind Loading of Structures', 3rd edn.

[20] Horn, D 2011, 'Technical Manual 1 - Design of Monopole Bases'.

[21] International Committee on Industrial Chimneys (CICIND) 2002, 'Model Code for Steel Chimneys'.

[22] International Committee on Industrial Chimneys (CICIND) 2002, 'Model Code for Steel Chimneys - Commentaries and Appendices'.

- [23] Rocla 2015, 'RocPole™ Version 5.0 Application User Guide'.
- [24] Standards Australia 1985, 'AS 1275-1985 Metric screw threads for fasteners'.
- [25] Standards Australia 1998, 'AS 4100-1998 Steel structures Commentary'.
- [26] Standards Australia 2010, 'AS 5100.3-2004 Bridge design Part 3: Foundations and soil-supporting structures'.

[27] Standards Australia 2012, 'AS 4100-1998 Steel structures'.

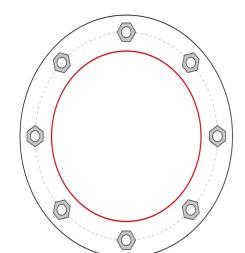
[28] Standards Australia 2013, 'AS 3600-2009 Concrete structures'.

[29] Standards Australia/Standards New Zealand 1998, 'AS/NZS 4600 Supplement 1:1998 Cold-formed steel structures - Commentary'.

[30] Standards Australia/Standards New Zealand 2000, 'AS/NZS 4676:2000 Structural design requirements for utility service poles'.

- [31] Standards Australia/Standards New Zealand 2003, 'AS/NZS 1170.3:2003 Structural design actions Part 3: Snow and ice actions'.
- [32] Standards Australia/Standards New Zealand 2009, 'AS/NZS 1170.1:2002 Structural design actions Part 1: Permanent, imposed and other actions'.
- [33] Standards Australia/Standards New Zealand 2010, 'AS/NZS 7000:2010 Overhead line design Detailed procedures'.
- [34] Standards Australia/Standards New Zealand 2011, 'AS/NZS 1170.0:2002 Structural design actions Part 0: General principles'.
- [35] Standards Australia/Standards New Zealand 2011, 'AS/NZS 3678 Structural steel Hot-rolled plates, floorplates and slabs'.
- [36] Standards Australia/Standards New Zealand 2017, 'AS/NZS 1170.2:2011 Structural design actions Part 2: Wind actions'.
- [37] Standards Australia/Standards New Zealand 2018, 'AS/NZS 4600:2018 Cold-formed steel structures'.
- [38] Standards New Zealand 1997, 'NZS 3404:Part 1:1997 Steel Structures Standard'.
- [39] Telecommunications Industry Association 2014, 'TIA-222-G-2 Structural Standard for Antenna Supporting Structures and Antennas'.
- [40] Telecommunications Industry Association 2019, 'TIA-222-H-1 Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures'.
- [41] Wilson, K 1997, 'Bearing Pressures for Rectangular Footings with Biaxial Uplift', Journal of Bridge Engineering, Vol. 2, No. 1, pp. 27-33.

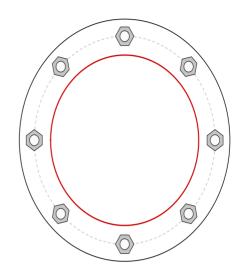
[42] University of Sydney (USYD) 2002, 'Advice on Design of Polygonal Poles for Power Transmission Lines', University of Sydney Centre for Advanced Structural Engineering Investigation Report No. 51356.


# APPENDIX B

# ADDITIONAL CALCULATIONS

# **Monopole Flange Plate Connection**

| BU #             |   |
|------------------|---|
| Site Name        |   |
| Order #          |   |
|                  |   |
| TIA-222 Revision | Н |


# **Top Plate - External**



# *Elevation = 18.896 ft.*

| Applied Loads                   |       |  |
|---------------------------------|-------|--|
| Moment (kip-ft)                 | 16.71 |  |
| Axial Force (kips)              | 0.90  |  |
| Shear Force (kips)              | 1.71  |  |
| *TIA-222-H Section 15.5 Applied |       |  |





# **Connection Properties** Bolt Data (8) 5/8" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 12" BC **Bottom Plate Data**

#### **Top Plate Data**

13.976" OD x 0.63" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

**Bottom Stiffener Data** 

13.976" OD x 0.63" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

#### **Top Stiffener Data**

N/A

## **Top Pole Data**

9.833" x 0.1969" 8-sided pole (A572-50; Fy=50 ksi, Fu=65 ksi)

# **Bottom Pole Data**

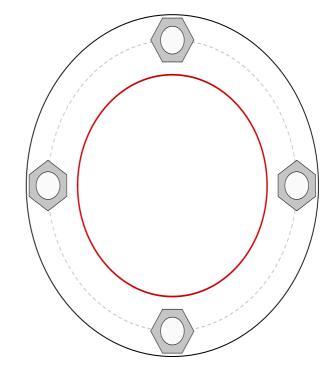
N/A

9.833" x 0.1969" 8-sided pole (A572-50; Fy=50 ksi, Fu=65 ksi)

| Analysis Results   |           |  |
|--------------------|-----------|--|
| Bolt Capacity      |           |  |
| Max Load (kips)    | .23       |  |
| Allowable (kips) 2 | ).34      |  |
| Stress Rating: 3   | 8.6% Pass |  |

| Top Plate Capacity          |       |            |
|-----------------------------|-------|------------|
| Max Stress (ksi):           | 14.37 | (Flexural) |
| Allowable Stress (ksi):     | 45.00 |            |
| Stress Rating:              | 30.4% | Pass       |
| Tension Side Stress Rating: | 14.8% | Pass       |

#### **Bottom Plate Capacity** Max Stress (ksi): 14.37 (Flexural) 45.00 Allowable Stress (ksi): Stress Rating:


| Allowable Stiess (KSI).     | 45.00 |      |  |
|-----------------------------|-------|------|--|
| Stress Rating:              | 30.4% | Pass |  |
| Tension Side Stress Rating: | 14.8% | Pass |  |

# Monopole Base Plate Connection

| Site Info |  |
|-----------|--|
| BU #      |  |
| Site Name |  |
| Order #   |  |

| Analysis Considerations |     |
|-------------------------|-----|
| TIA-222 Revision        | Н   |
| Grout Considered:       | No  |
| I <sub>ar</sub> (in)    | 1.5 |

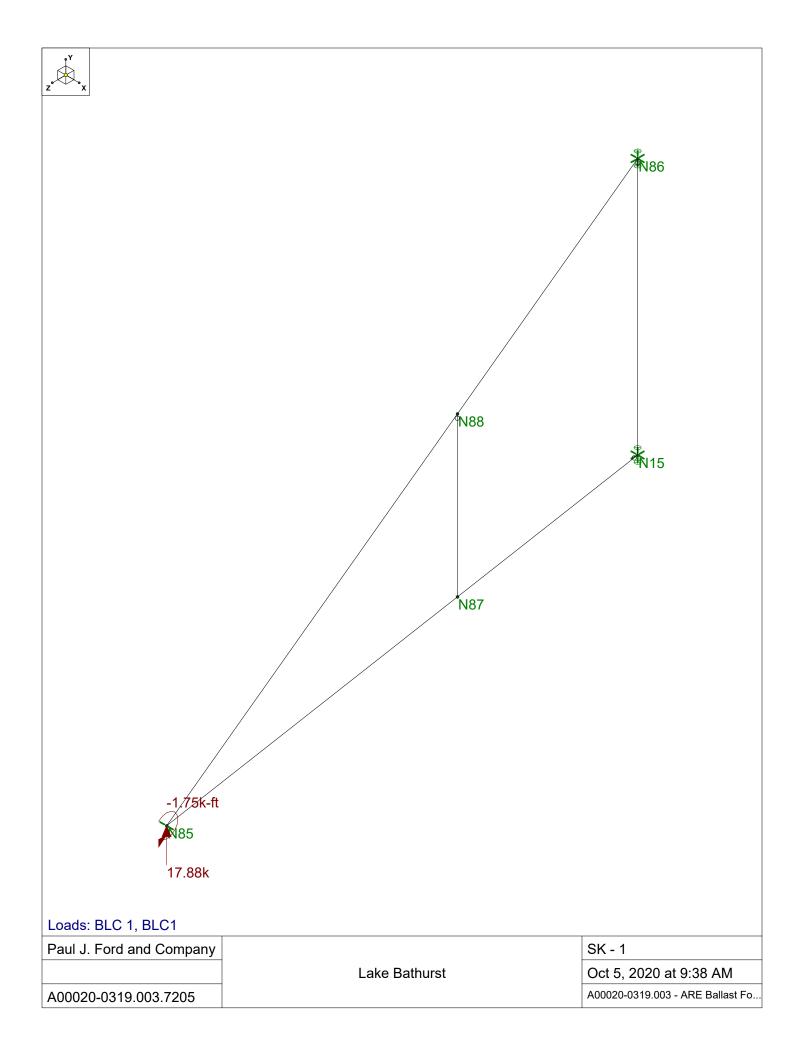
| Applied Loads                   |       |
|---------------------------------|-------|
| Moment (kip-ft)                 | 54.40 |
| Axial Force (kips)              | 1.44  |
| Shear Force (kips)              | 2.36  |
| *TIA-222-H Section 15.5 Applied |       |

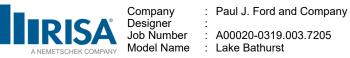


| Connection Properties                                              | Analysis Results        |               |                         |  |
|--------------------------------------------------------------------|-------------------------|---------------|-------------------------|--|
| Anchor Rod Data                                                    | Anchor Rod Summary      | (ui           | (units of kips, kip-in) |  |
| (4) 1-1/2" ø bolts (F1554-55 N; Fy=55 ksi, Fu=75 ksi) on 15.75" BC | Pu_c = 41.66            | φPn_c = 87.47 | Stress Rating           |  |
|                                                                    | Vu = 0.59               | φVn = 39.36   | 45.4%                   |  |
| Base Plate Data                                                    | Mu = n/a                | φMn = n/a     | Pass                    |  |
| 18.5" OD x 1.375" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)            |                         |               |                         |  |
|                                                                    | Base Plate Summary      |               |                         |  |
| Stiffener Data                                                     | Max Stress (ksi):       | 16.2          | (Flexural)              |  |
| N/A                                                                | Allowable Stress (ksi): | 45            |                         |  |
|                                                                    | Stress Rating:          | 34.3%         | Pass                    |  |
| Pole Data                                                          | -                       |               |                         |  |

# FOUNDATION BEARING AND OVERTURNING CHECK

#### Pole Base Reactions and Height


| Pole base moment, Mu | <u>56.9</u>  | ft-k | <u>77.1</u>   | kNm |
|----------------------|--------------|------|---------------|-----|
| Pole axial load, Pu  | <u>1.475</u> | k    | <u>6.561</u>  | kN  |
| Pole shear load, Vu  | <u>2.419</u> | k    | <u>10.760</u> | kN  |
| Base of pole ht      | <u>3.4</u>   | ft   |               |     |
| OTM at base of fdn   | <u>65.1</u>  | ft-k | <u>88.3</u>   | kNm |


# **Foundation Information**

| Foundation wall height                      | <u>36</u>     | in    |
|---------------------------------------------|---------------|-------|
| Foundation base width                       | <u>88.86</u>  | in    |
| Gap between Inner and Outer Base Frames     | <u>6</u>      | in    |
| Extension tray width                        | <u>6.21</u>   | in    |
| Extension tray length                       | <u>88.86</u>  | in    |
| Ballast depth                               | <u>36</u>     | in    |
| Ballast volume                              | <u>161.5</u>  | cu ft |
| Ballast unit wt                             | <u>100</u>    | pcf   |
| Total ballast wt                            | <u>16.2</u>   | kips  |
| Foundation steel wt                         | <u>1980</u>   | lbs   |
| Foundation ext. tray weigth                 | <u>510</u>    | lbs   |
| Fdn tot wt                                  | <u>2.49</u>   | kips  |
| Factored pole, fdn and ballast weight, 0.9D | <u>17.88</u>  | kips  |
| е                                           | <u>3.642</u>  | ft    |
| 0.5 fdn w + tray d                          | <u>4.220</u>  | ft    |
| Overturning?                                | <u>STABLE</u> |       |

### **Check Foundation Bearing**

| phi<br>Ultimate bearing pressure  | <u>0.5</u><br><u>4</u> | ksf   | <u>191.2</u> | kPa |
|-----------------------------------|------------------------|-------|--------------|-----|
| Wind into t                       | he Side                |       |              |     |
| Bearing area                      | <u>9.22</u>            | sq ft |              |     |
| Ultimate bearing pressure         | <u>1.94</u>            | ksf   | <u>92.7</u>  | kPa |
| Factored nominal bearing capacity | <u>2</u>               | ksf   | <u>95.6</u>  | kPa |
| % capacity                        | <u>96.9%</u>           | ОК    |              |     |
| Wind into the Corner              |                        |       |              |     |
| Bearing area                      | <u>11.4</u>            | sq ft |              |     |
| Ultimate bearing pressure         | <u>1.57</u>            | ksf   | <u>74.9</u>  | kPa |
| Factored nominal bearing capacity | <u>2</u>               | ksf   | <u>95.6</u>  | kPa |
| % capacity                        | <u>78.4%</u>           | ОК    |              |     |





Oct 5, 2020 9:38 AM Checked By:\_

# (Global) Model Settings

| Display Sections for Member Calcs          | 5                       |
|--------------------------------------------|-------------------------|
| Max Internal Sections for Member Calcs     | 97                      |
| Include Shear Deformation?                 | Yes                     |
| Increase Nailing Capacity for Wind?        | Yes                     |
| Include Warping?                           | Yes                     |
| Trans Load Btwn Intersecting Wood Wall?    | Yes                     |
| Area Load Mesh (mm <sup>2</sup> )          | 92903.412               |
| Merge Tolerance (mm)                       | 3.048                   |
| P-Delta Analysis Tolerance                 | 0.50%                   |
| Include P-Delta for Walls?                 | Yes                     |
| Automatically Iterate Stiffness for Walls? | Yes                     |
| Max Iterations for Wall Stiffness          | 3                       |
| Gravity Acceleration (mm/sec^2)            | 9814.58                 |
| Wall Mesh Size (mm)                        | 304.801                 |
| Eigensolution Convergence Tol. (1.E-)      | 4                       |
| Vertical Axis                              | Y                       |
| Global Member Orientation Plane            | XZ                      |
| Static Solver                              | Sparse Accelerated      |
| Dynamic Solver                             | Accelerated Solver      |
|                                            |                         |
| Hot Rolled Steel Code                      | AISC 13th(360-05): LRFD |
| Adjust Stiffness?                          | Yes(Iterative)          |
| RISAConnection Code                        | None                    |
| Cold Formed Steel Code                     | None                    |
| Wood Code                                  | None                    |
| Wood Temperature                           | < 100F                  |
| Concrete Code                              | None                    |
| Masonry Code                               | None                    |
| Aluminum Code                              | None - Building         |
| Stainless Steel Code                       | AISC 14th(360-10): ASD  |
| Adjust Stiffness?                          | Yes(Iterative)          |
|                                            |                         |
| Number of Shear Regions                    | 4                       |
| Region Spacing Increment (mm)              | 101.6                   |
| Biaxial Column Method                      | Exact Integration       |
| Parme Beta Factor (PCA)                    | .65                     |
| Concrete Stress Block                      | Rectangular             |
| Use Cracked Sections?                      | Yes                     |
| Use Cracked Sections Slab?                 | Yes                     |
| Bad Framing Warnings?                      | No                      |
| Unused Force Warnings?                     | Yes                     |
| Min 1 Bar Diam. Spacing?                   | No                      |
| Concrete Rebar Set                         | REBAR SET ASTMA615      |
| Min % Steel for Column                     | 1                       |
| Max % Steel for Column                     | 8                       |
|                                            | <b>~</b>                |



: Lake Bathurst

# (Global) Model Settings, Continued

| Seismic Code                | ASCE 7-10   |
|-----------------------------|-------------|
| Seismic Base Elevation (mm) | Not Entered |
|                             |             |
| Add Base Weight?            | Yes         |
| Ct X                        | .049        |
| Ct Z                        | .049        |
| T X (sec)                   | Not Entered |
| TZ (sec)                    | Not Entered |
| RX                          | 3           |
| RZ                          | 3           |
| Ct Exp. X                   | .75         |
| Ct Exp. Z                   | .75         |
| SD1                         | 1           |
| SDS                         | 1           |
| S1                          | 1           |
| TL (sec)                    | 5           |
| Risk Cat                    | l or ll     |
| Drift Cat                   | Other       |
| Om Z                        | 1           |
| Om X                        | 1           |
| Cd Z                        | 4           |
| Cd X                        | 4           |
| Rho Z                       | 1           |
| Rho X                       | 1           |
|                             |             |

# Joint Loads and Enforced Displacements (BLC 1 : BLC1)

|   | Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in,rad), (k*s^2/ |
|---|-------------|-------|-----------|---------------------------------------|
| 1 | N85         | L     | Y         | 17.88                                 |
| 2 | N85         | L     | Mx        | -1.75                                 |
| 3 | N87         | Ĺ     | Y         | 0                                     |

## Member Primary Data

|   | Label | I Joint | J Joint | K Joint Rotate( | . Section/Shape | Туре | Design List | Material | Design  |
|---|-------|---------|---------|-----------------|-----------------|------|-------------|----------|---------|
| 1 | p1    | N15     | N86     |                 | CH PIPE76X18    | None | None        | Q345-B   | Typical |
| 2 | LL1   | N86     | N85     |                 | LL_100X63X6X0   | None | None        | Q235-B   | Typical |
| 3 | LL2   | N15     | N85     | 180             | LL_100X63X6X0   | None | None        | Q235-B   | Typical |
| 4 | PL1   | N87     | N88     | 90              | PL 12 x 345     | None | None        | Q235-B   | Typical |

# Hot Rolled Steel Properties

|   | Label      | E [ksi] | G [ksi] | Nu | Therm (/1E | .Density[k/ft | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|------------|---------|---------|----|------------|---------------|------------|-----|---------|-----|
| 1 | A36 Gr.36  | 29000   | 11154   | .3 | .65        | .49           | 36         | 1.5 | 58      | 1.2 |
| 2 | A572 Gr.50 | 29000   | 11154   | .3 | .65        | .49           | 50         | 1.1 | 65      | 1.1 |
| 3 | A992       | 29000   | 11154   | .3 | .65        | .49           | 50         | 1.1 | 65      | 1.1 |
| 4 | A500 Gr.42 | 29000   | 11154   | .3 | .65        | .49           | 42         | 1.4 | 58      | 1.3 |
| 5 | A500 Gr.46 | 29000   | 11154   | .3 | .65        | .49           | 46         | 1.4 | 58      | 1.3 |
| 6 | A53 Gr. B  | 29000   | 11154   | .3 | .65        | .49           | 35         | 1.5 | 58      | 1.2 |
| 7 | Q235-B     | 29000   | 11154   | .3 | .65        | .49           | 34         | 1.5 | 58      | 1.2 |
| 8 | Q345-B     | 29000   | 11154   | .3 | .65        | .49           | 50         | 1.5 | 65      | 1.2 |



# **Member Section Forces**

|    | LC | Member Label | Sec | Axial[k] | y Shear[k] | z Shear[k] | Torque[k-ft] | y-y Moment[k-ft] | z-z Moment[k-ft] |
|----|----|--------------|-----|----------|------------|------------|--------------|------------------|------------------|
| 1  | 1  | p1           | 1   | 0        | 0          | 094        | 0            | 0                | 0                |
| 2  |    |              | 2   | 0        | 0          | 094        | 0            | 044              | 0                |
| 3  |    |              | 3   | 0        | 0          | 094        | 0            | 088              | 0                |
| 4  |    |              | 4   | 0        | 0          | 094        | 0            | 133              | 0                |
| 5  |    |              | 5   | 0        | 0          | 094        | 0            | 177              | 0                |
| 6  | 1  | LL1          | 1   | 41.289   | .424       | 0          | 0            | 0                | 177              |
| 7  |    |              | 2   | 41.289   | .424       | 0          | 0            | 0                | 632              |
| 8  |    |              | 3   | 38.977   | .143       | 0          | 0            | 0                | 945              |
| 9  |    |              | 4   | 38.977   | .143       | 0          | 0            | 0                | -1.099           |
| 10 |    |              | 5   | 38.977   | .143       | 0          | 0            | 0                | -1.253           |
| 11 | 1  | LL2          | 1   | -34.198  | .05        | 0          | 0            | 0                | 0                |
| 12 |    |              | 2   | -34.198  | .05        | 0          | 0            | 0                | 044              |
| 13 |    |              | 3   | -32.025  | .808       | 0          | 0            | 0                | 1.921            |
| 14 |    |              | 4   | -32.025  | .808       | 0          | 0            | 0                | 1.209            |
| 15 |    |              | 5   | -32.025  | .808       | 0          | 0            | 0                | .497             |
| 16 | 1  | PL1          | 1   | 1.193    | -1.99      | 0          | 0            | 0                | -2.322           |
| 17 |    |              | 2   | 1.193    | -1.99      | 0          | 0            | 0                | -1.741           |
| 18 |    |              | 3   | 1.193    | -1.99      | 0          | 0            | 0                | -1.161           |
| 19 |    |              | 4   | 1.193    | -1.99      | 0          | 0            | 0                | 58               |
| 20 |    |              | 5   | 1.193    | -1.99      | 0          | 0            | 0                | 0                |

# Member AISC 13th(360-05): LRFD Steel Code Checks

|   | LC | Member | Shape       | UC Max | Loc[m | Shear | Loc[m | .Dir | phi*Pnc[k] | phi*Pnt[k] | phi*Mn | phi*Mn | Cb    | Egn   |
|---|----|--------|-------------|--------|-------|-------|-------|------|------------|------------|--------|--------|-------|-------|
| 1 | 1  | p1     | CH_PIPE7    | .012   | 576.2 | .001  | Ō     |      | 217.03     | 228.767    | 14.301 | 14.301 | 1     | H1-1b |
| 2 | 1  | LL1    | LL_100X6    | .769   | 1306  | .012  | 0     | y    | 63.071     | 91.208     | 3.985  | 7.355  | 1.294 | H1-1a |
| 3 | 1  | LL2    | LL_100X6    | .786   | 414.1 | .024  | 414.1 | ý    | 65.085     | 91.208     | 3.985  | 4.597  | 1.646 | H1-1a |
| 4 | 1  | PL1    | PL 12 x 345 | .048   | 0     | .025  | 0     | y    | 94.081     | 196.36     | 1.933  | 55.568 | 1.667 | H1-1b |

# APPENDIX C

# POLE AND FOUNDATION DRAWING

# **NEW 39.36' (12 M) MONOPOLE**

# LAKE BATHURST, NEW SOUTH WALES, AUSTRALIA

LAT: -35° 3' 45.00"; LONG: 149° 38' 38.76"

# PROJECT CONTACTS

STRUCTURE OWNER: ARE TELECOM INCORPORATED CONTACT: DION JOHNSON AT DJOHNSON@ARETELECOM.COM PH: (651) 724-1322

ENGINEER OF RECORD: PJFTELECOM@PAULJFORD.COM

| WIND DESIGN DATA   |             |  |  |  |  |
|--------------------|-------------|--|--|--|--|
| REFERENCE STANDARD | AS/NZS 1170 |  |  |  |  |
| IMPORTANCE LEVEL   | 2           |  |  |  |  |
| LIFE               | 50 YEARS    |  |  |  |  |
| REGION             | A3          |  |  |  |  |
| ULTIMATE ARI       | 500 YEARS   |  |  |  |  |
| ULTIMATE VR        | 45 m/s      |  |  |  |  |
| ICE VR             | 34 m/s      |  |  |  |  |
| SERVICEABILITY VR  | 37 m/s      |  |  |  |  |

| SHEET INDEX  |                      |  |  |  |  |
|--------------|----------------------|--|--|--|--|
| SHEET NUMBER | DESCRIPTION          |  |  |  |  |
| T-1          | TITLE SHEET          |  |  |  |  |
| N-1          | GENERAL NOTES        |  |  |  |  |
| S-1          | NEW MONOPOLE PROFILE |  |  |  |  |
| S-2          | FLANGE DETAILS       |  |  |  |  |
| S-3          | DIRECT EMBED DETAILS |  |  |  |  |

| PRESUMPTIVE SOIL PARAMETERS |                  |  |  |  |  |
|-----------------------------|------------------|--|--|--|--|
| NET ULTIMATE BEARING (PSF)  | 4000 (191.2 kPa) |  |  |  |  |
| SOIL DENSITY (PCF)          | 100              |  |  |  |  |
| FRICTION ANGLE (°)          | 30               |  |  |  |  |
| GROUNDWATER TABLE           | BELOW FOUNDATION |  |  |  |  |

| FACTORED BASE REACTIONS      |                  |  |  |  |
|------------------------------|------------------|--|--|--|
| SHEAR (KIPS) 2.42 (10.76 kN) |                  |  |  |  |
| AXIAL (KIPS)                 | 1.48 (6.57 kN)   |  |  |  |
| MOMENT (KIP-FT)              | 56.9 (77.14 kNm) |  |  |  |

TOWER MANUFACTURER: ARE TELECOM TOWER MANUFACTURER PROJECT #: 1525

| © Copyright 2020, by Paul J. Ford and Company,<br>All Rights Reserved. This document and<br>the data contained herein, is proprietary<br>to Paul J. Ford and Company, issued in<br>strict confidence and shall not, without the<br>prior written permission of Paul J. Ford<br>and Company, be reproduced, copied or<br>used for any purpose other than the<br>intended use for this specific project. |                            |                                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|--|--|--|--|
| <b>PAUL J. FORD</b><br><b>&amp; COMPANY</b><br>250 E Broad St, Ste 600: Columbus, OH 43215<br>Phone 614.221.6679 www.pauljford.com                                                                                                                                                                                                                                                                     | ARE TELECOM INCORPORATED   | 1043 GRAND AVE #213 ST. PAUL, MN 55105<br>(651) 724-1322 |  |  |  |  |
| LAKE BATHURST, NEW SOUTH WALES, AUSTRALIA                                                                                                                                                                                                                                                                                                                                                              | NEW 39.36' (12 M) MONOPOLE |                                                          |  |  |  |  |
| PROJECT No: AI<br>DRAWN BY:<br>DESIGNED BY:                                                                                                                                                                                                                                                                                                                                                            | 00020-0333                 | TAN<br>RWH                                               |  |  |  |  |
| CHECKED BY:<br>DATE:                                                                                                                                                                                                                                                                                                                                                                                   |                            | TJD<br>10/1/2020                                         |  |  |  |  |
| TITLE<br>SHEET                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                          |  |  |  |  |
| T-1                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                          |  |  |  |  |

#### GENERAL NOTES:

- ALL INFORMATION SHOWN IS TO BE COORDINATED BY THE CONTRACTOR AND OWNER. IF INFORMATION IS CONFLICTING. THE STRICTER PROVISION SHALL GOVERN. ANY DISCREPANCIES SHALL IMMEDIATELY BE BROUGHT TO THE ATTENTION OF ARE TELECOM AND PAUL J. FORD AND COMPANY SO THAT ANY CHANGES AND/OR ADJUSTMENTS, IF NECESSARY, CAN BE MADE TO THE DESIGN AND DRAWINGS.
- 2. DO NOT SCALE DRAWINGS.
- 3. FIELD WELDING IS NOT PERMITTED UNLESS APPROVED BY THE STRUCTURAL ENGINEER OF RECORD.
- ANY SUPPORT SERVICES PERFORMED BY THE ENGINEER DURING CONSTRUCTION SHALL BE DISTINGUISHED FROM CONTINUOUS AND DETAILED INSPECTION SERVICES, WHICH ARE FURNISHED BY OTHERS. THESE SUPPORT SERVICES PERFORMED BY THE ENGINEER ARE SOLELY FOR THE PURPOSE OF ASSISTING IN QUALITY CONTROL AND IN ACHIEVING CONFORMANCE WITH CONTRACT DOCUMENTS. THEY DO NOT GUARANTEE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE CONSTRUED AS SUPERVISION OF CONSTRUCTION.
- THE STRUCTURAL INTEGRITY OF THE DESIGN EXTENDS TO THE COMPLETE CONDITION ONLY. ALL NECESSARY PRECAUTIONS MUST BE TAKEN TO ENSURE STRUCTURAL INTEGRITY. INCLUDING, BUT NOT LIMITED TO, ENGINEERING ASSESSMENT OF CONSTRUCTION STRESSES WITH INSTALLATION MAXIMUM WIND SPEED AND/OR TEMPORARY BRACING AND SHORING.
- AERIAL AND UNDERGROUND UTILITIES AND FACILITIES MAY OR MAY NOT BE SHOWN ON THE DRAWINGS. THE GC SHALL TAKE EVERY PRECAUTION TO PRESERVE AND PROTECT THESE ITEMS. WHICH MAY INCLUDE AERIAL OR UNDERGROUND POWER LINES, TELEPHONE LINES, WATER LINES, SEWER LINES, CABLE TELEVISION FACILITIES, PIPELINES, STRUCTURES AND OTHER PUBLIC AND PRIVATE IMPROVEMENTS WITHIN OR ADJACENT TO THE WORK AREA. THE RESPONSIBILITY FOR DETERMINING THE ACTUAL ON-SITE LOCATION OF THESE ITEMS SHALL REST EXCLUSIVELY WITH THE GC.

#### STEEL NOTES

- STRUCTURAL STEEL MATERIALS, FABRICATION, DETAILING AND WORKMANSHIP SHALL CONFORM TO THE LATEST EDITION OF THE "SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS", ANSI/AISC 360 AND TO THE "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES", ANSI/AISC 303
- ALL REQUIRED ITEMS SHALL BE FABRICATED PER THE MATERIALS SPECIFIED BELOW, UNO ON THE DETAIL DRAWING SHEETS. IF THE FABRICATOR FINDS FOR ANY COMPONENT THAT THE MATERIALS HAVE NOT BEEN CLEARLY SPECIFIED, THE FABRICATOR SHALL SUBMIT AN RFI TO THE EOR TO CONFIRM THE REQUIRED MATERIAL.

ALL STRUCTURAL ELEMENTS SHALL BE NEW AND SHALL CONFORM TO THE FOLLOWING REQUIREMENTS, UNO:

| POLE SHAFT STEEL:       | ASTM A572 GRADE 65 (FY = 65 KSI)  |
|-------------------------|-----------------------------------|
| BASE PLATE STEEL:       | ASTM A572 GRADE 50 (FY = 50 KSI)  |
| ANCHOR RODS:            | ASTM F1554 GRADE 55 (FY = 55 KSI) |
| FLANGE PLATES:          | ASTM A572 GRADE 50 (FY = 50 KSI)  |
| BOLTS:                  | ASTM A325X                        |
| PLATE:                  | ASTM A572 GRADE 50 (FY = 50 KSI)  |
| PIPES:                  | ASTM A500 GRADE 42 (FY = 42 KSI)  |
| HSS:                    | ASTM A500 GRADE 46 (FY = 46 KSI)  |
| ALL OTHER STEEL SHAPES: | ASTM A572 GRADE 50 (FY = 50 KSI)  |
| WELDING ELECTRODES:     | E80XX / E8XT-XX                   |
|                         |                                   |

- 3. ALL WELD DESIGN, WELD DETAILING AND WELDING SHALL CONFORM TO THE LATEST EDITION OF AWS D1.1
- AFTER FABRICATION, HOT-DIP GALVANIZE ALL STEEL ITEMS, UNO. GALVANIZE PER ASTM A123, ASTM A153/A153M, OR ASTM A653 G90, AS APPLICABLE. ASTM A490 BOLTS SHALL NOT BE HOT-DIP GALVANIZED BUT SHALL INSTEAD BE COATED WITH MAGNI 565 OR EOR APPROVED EQUIVALENT, PER ASTM F2833.
- ALL COMPLETE JOINT PENETRATION GROOVE WELDS CONTAINED IN JOINTS AND SPLICES SHALL BE TESTED 100 PERCENT BY ULTRASONIC TESTING PRIOR TO AND AFTER GALVANIZING.

6. GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS ANY ABRASIONS, CUTS, FIELD DRILLING, AND FIELD WELDING SHALL BE TOUCHED UP WITH TWO COATS OF ZRC-BRAND (OR APPROVED EQUIVALENT) ZINC-RICH COLD GALVANIZING COMPOUND. FILM THICKNESS PER COAT SHALL BE: WET 3 MILS: DRY 1.5 MILS APPLY PER ZRC (MANUFACTURER) RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-831-3275 FOR PRODUCT INFORMATION.

#### ERECTION NOTES:

- 1. ALL CONSTRUCTION MEANS AND METHODS, INCLUDING BUT NOT LIMITED TO ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS, SHALL BE THE RESPONSIBILITY OF THE GC RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN. AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION). INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH THE ANSI/TIA-322 (LATEST EDITION).
- 2. IT IS SOLELY THE CONTRACTOR'S RESPONSIBILITY TO ENSURE THE SAFETY AND STABILITY OF THE MONOPOLE. FOUNDATION AND ITS COMPONENT PARTS DURING INSTALLATION.
- 3. ALL MANUFACTURER'S HARDWARE ASSEMBLY INSTRUCTIONS SHALL BE FOLLOWED, UNO. CONFLICTING NOTES SHALL BE BROUGHT TO THE ATTENTION OF THE EOR AND THE OWNER'S POC.
- 4. ALL JOINTS USING ASTM A325 OR A490 BOLTS, U-BOLTS, V-BOLTS, THREADED RODS, AND ANCHOR RODS SHALL BE SNUG TIGHTENED. UNO.
- 5. A NUT LOCKING DEVICE SHALL BE INSTALLED ON ALL PROPOSED SNUG TIGHTENED ASTM A325 OR A490 BOLTS, U-BOLTS, V-BOLTS, THREADED RODS, AND ANCHOR RODS.
- 6. ALL JOINTS ARE BEARING TYPE CONNECTIONS UNO. IF NO BOLT LENGTH IS GIVEN IN THE BILL OF MATERIALS. THE CONNECTION MAY INCLUDE THREADS IN THE SHEAR PLANES. AND THE GC IS RESPONSIBLE FOR SIZING THE LENGTH OF THE BOLT.
- 7. ALL PROPOSED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT BE AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED.
- 8. IF ASTM A325 OR A490 BOLTS, AND/OR THREADED RODS ARE SPECIFIED TO BE PRE-TENSIONED, THESE SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE RCSC SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS.

#### GEOTECHNICAL AND SOIL NOTES:

- 1. THIS FOUNDATION DESIGN WAS BASED ON THE SOIL PARAMETERS LISTED ON SHEET T-1. A GEOTECHNICAL REPORT WAS NOT PROVIDED FOR THE SITE. THEREFORE, THE FOUNDATION DESIGN IS BASED UPON AN ASSUMED BEARING PRESSURE. THE PREPARED SUBGRADE (FOUNDATION BEARING SURFACE) SHALL HAVE A MINIMUM ULTIMATE BEARING PRESSURE AS NOTES ON SHEET T-1.
- 2. THE MATERIAL BELOW THE FOUNDATION SHALL BE VERIFIED BY A GEOTECHNICAL ENGINEER TO ACHIEVE ADEQUATE DESIGN CAPACITY. IF THE SOIL CONDITIONS DO NOT MEET THE PRESUMPTIVE SOIL PARAMETERS. PAUL J. FORD AND COMPANY SHALL BE CONTACTED IMMEDIATELY TO DETERMINE THE SIGNIFICANCE IN DEVIATION.

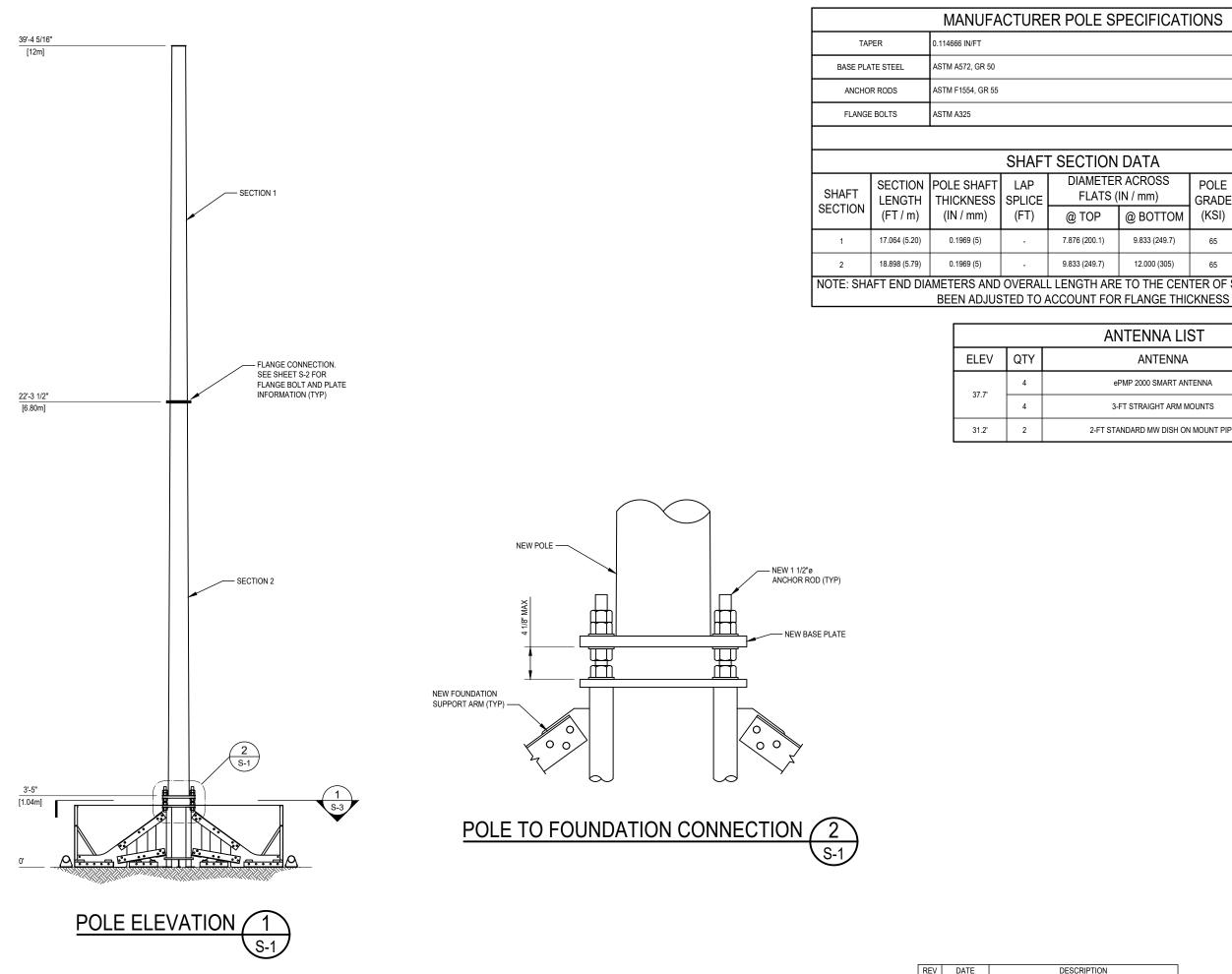
#### GENERAL FOUNDATION NOTES:

- 1. THE FOUNDATION DESIGN HAS BEEN DEVELOPED IN ACCORDANCE WITH GENERALLY ACCEPTED PROFESSIONAL ENGINEERING PRINCIPLES AND PRACTICES.
- 2. WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND SAFETY REGULATIONS. THE FOUNDATION CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING THE LOCAL BUILDING OFFICIALS FOR ANY INSPECTIONS THAT MAY BE REQUIRED.

- ATTESTING THAT HE DOES HAVE SUFFICIENT EXPERIENCE AND ABILITY, THAT HE IS THIS WORK IN THE JURISDICTION IN WHICH THE WORK IS TO BE PERFORMED.
- 5. IF MATERIALS, QUANTITIES, STRENGTHS OR SIZES INDICATED BY THE DRAWINGS OR
- INSTALLATION INSTRUCTIONS (SEE NOTE 4).
- FOOT (PCF).

3. THE CONTRACTOR MUST BE EXPERIENCED IN THE PERFORMANCE OF WORK SIMILAR TO THAT DESCRIBED ON THESE DRAWINGS. BY ACCEPTANCE OF THIS PROJECT, THE CONTRACTOR IS KNOWLEDGEABLE OF THE WORK TO BE PERFORMED AND THAT HE IS PROPERLY LICENSED TO DO

4. CONTRACTOR SHALL REFER TO AMERICAN RESOURCE & ENERGY (ARE) ASSEMBLY AND INSTALLATION INSTRUCTIONS FOR THE FOUNDATION SYSTEM BEING INSTALLED AT THE SITE.


SPECIFICATIONS ARE NOT IN AGREEMENT WITH THESE NOTES. THE BETTER QUALITY AND/OR GREATER QUANTITY, STRENGTH OR SIZE INDICATED, SPECIFIED OR NOTED SHALL BE PROVIDED.

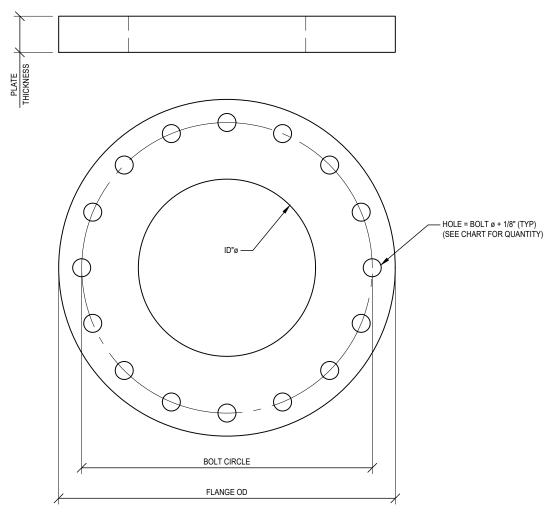
6. ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. REFER TO THE ARE ASSEMBLY AND

7. BACKFILL / BALLAST MATERIAL SHALL HAVE A MINIMUM UNIT WEIGHT OF 100 POUNDS PER CUBIC

| All Rights Reserved. This document and<br>the data contained herein, is proprietary<br>to Paul J. Ford and Company, issued in<br>strict confidence and shall not, without the<br>prior written permission of Paul J. Ford<br>and Company, be reproduced, copied or<br>used for any purpose other than the<br>intended use for this specific project. |                          |                                                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|--|--|--|
| <b>PAUL J. FORD</b><br>& COMPANY<br>250 E Broad St, Ste 600: Columbus, OH 43215<br>Phone 614.221.6679 www.pauljford.com                                                                                                                                                                                                                              | ARE TELECOM INCORPORATED | 1043 GRAND AVE #213 ST. PAUL, MN 55105<br>(651) 724-1322 |  |  |  |
| LAKE BATHURST, NEW SOUTH WALES, AUSTRALIA<br>NEW 39.36' (12 M) MONOPOLE                                                                                                                                                                                                                                                                              |                          |                                                          |  |  |  |
| PROJECT No: AI<br>DRAWN BY:<br>DESIGNED BY:                                                                                                                                                                                                                                                                                                          |                          |                                                          |  |  |  |
| CHECKED BY:<br>DATE:                                                                                                                                                                                                                                                                                                                                 |                          | TJD<br>10/1/2020                                         |  |  |  |
| GENERAL<br>NOTES                                                                                                                                                                                                                                                                                                                                     |                          |                                                          |  |  |  |
| N-1                                                                                                                                                                                                                                                                                                                                                  |                          |                                                          |  |  |  |

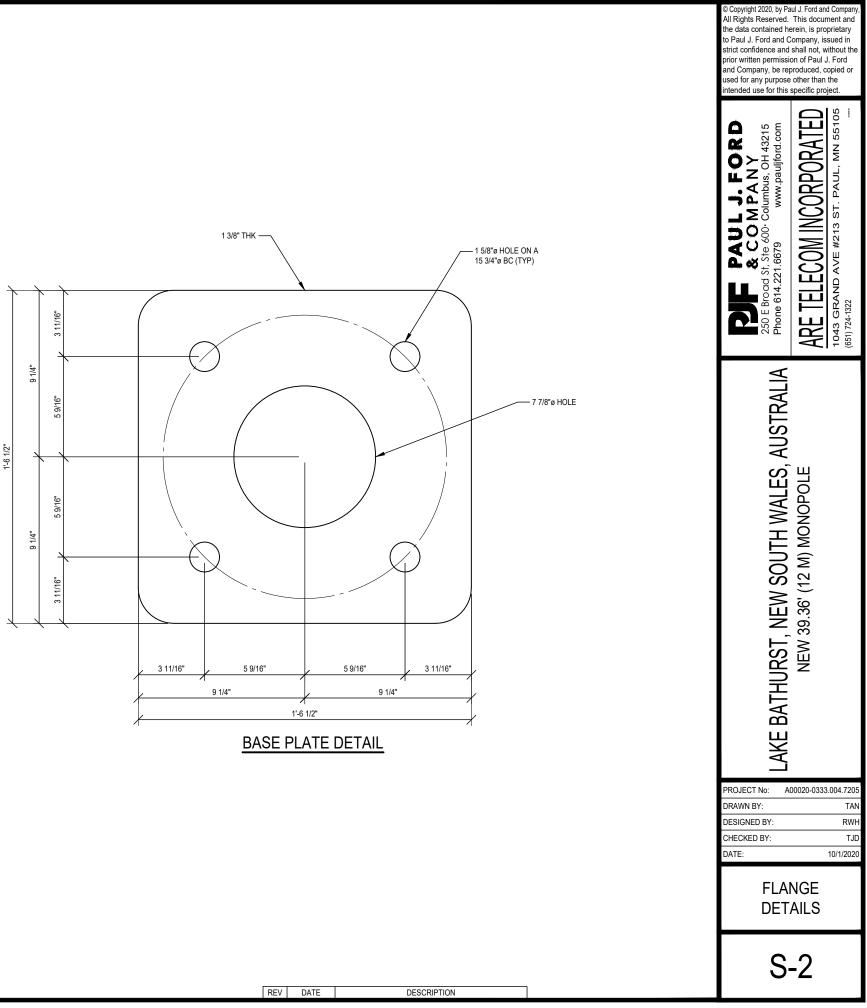
Copyright 2020, by Paul J. Ford and Compar

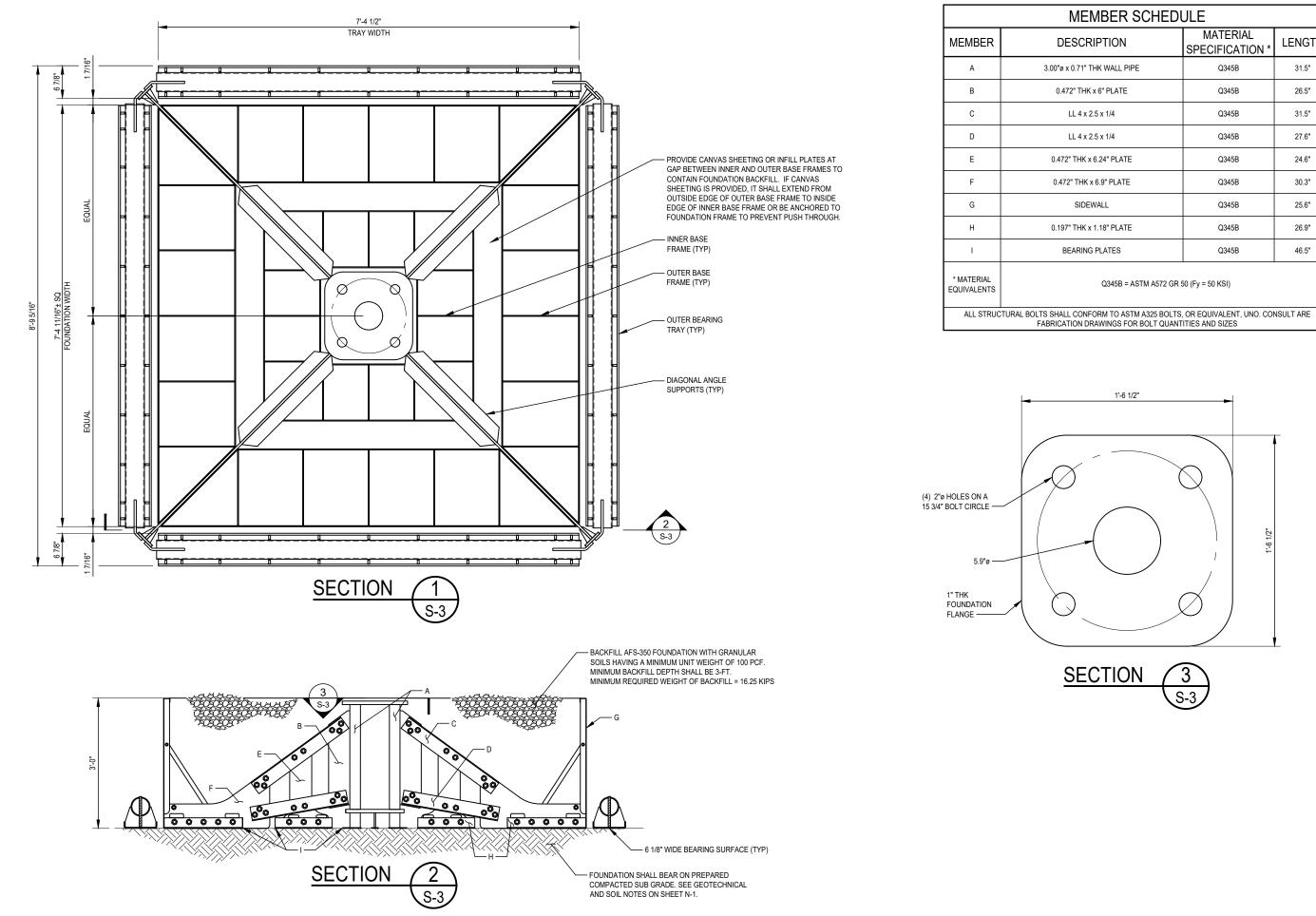



REV DATE

Copyright 2020, by Paul J. Ford and Compa Il Rights Reserved. This document and e data contained herein, is proprietary Paul J. Ford and Company, issued in rict confidence and shall not, without th rior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the ntended use for this specific project.

| ON DATA                                  |                      |               |                 |               |  |
|------------------------------------------|----------------------|---------------|-----------------|---------------|--|
|                                          | R ACROSS<br>IN / mm) | POLE<br>GRADE | FLANGE<br>PLATE | POLE<br>SHAPE |  |
|                                          | @ BOTTOM             | (KSI)         | GRADE (KSI)     |               |  |
| )                                        | 9.833 (249.7)        | 65            | 50              | 8-SIDED       |  |
| )                                        | 12.000 (305)         | 65            | 50              | 8-SIDED       |  |
| ARE TO THE CENTER OF SPLICE AND HAVE NOT |                      |               |                 |               |  |


| ANTENNA LIST                     |            |  |  |
|----------------------------------|------------|--|--|
| ANTENNA                          | COAX       |  |  |
| ePMP 2000 SMART ANTENNA          | (4) 7/8"   |  |  |
| 3-FT STRAIGHT ARM MOUNTS         |            |  |  |
| T STANDARD MW DISH ON MOUNT PIPE | (2) CAT 5E |  |  |






# FLANGE PLATE DETAIL

|            | FLANGE PLATE CHART |         |                |     |               |                  |
|------------|--------------------|---------|----------------|-----|---------------|------------------|
| ELEVATION  | PLATE              |         | BOLT DATA      |     |               |                  |
| LLEVATION  | OD (in)            | ID (in) | THICKNESS (in) | QTY | DIAMETER (in) | BOLT CIRCLE (in) |
| 22'-3 1/2" | 13.97              | 7.480   | 0.630          | 8   | 0.625         | 12.008           |





REV DATE

DESCRIPTION

| MBER SCHEDULE |                             |        |  |  |
|---------------|-----------------------------|--------|--|--|
| RIPTION       | MATERIAL<br>SPECIFICATION * | LENGTH |  |  |
| THK WALL PIPE | Q345B                       | 31.5"  |  |  |
| K x 6" PLATE  | Q345B                       | 26.5"  |  |  |
| 2.5 x 1/4     | Q345B                       | 31.5"  |  |  |
| 2.5 x 1/4     | Q345B                       | 27.6"  |  |  |
| x 6.24" PLATE | Q345B                       | 24.6"  |  |  |
| x 6.9" PLATE  | Q345B                       | 30.3"  |  |  |
| EWALL         | Q345B                       | 25.6"  |  |  |
| x 1.18" PLATE | Q345B                       | 26.9"  |  |  |
| G PLATES      | Q345B                       | 46.5"  |  |  |
|               |                             | -      |  |  |

| © Copyright 2020, by Paul J. Ford and Company,<br>All Rights Reserved. This document and<br>the data contained herein, is proprietary<br>to Paul J. Ford and Company, issued in<br>strict confidence and shall not, without the<br>prior written permission of Paul J. Ford<br>and Company, be reproduced, copied or<br>used for any purpose other than the<br>intended use for this specific project. |                          |                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|--|--|
| <b>PAUL J. FORD</b><br>& COMPANY<br>250 E Broad St, Ste 600: Columbus, OH 43215<br>Phone 614.221.6679 www.pauljford.com                                                                                                                                                                                                                                                                                | ARE TELECOM INCORPORATED | 1043 GRAND AVE #213 ST. PAUL, MN 55105<br>(651) 724-1322 |  |  |
| LAKE BATHURST, NEW SOUTH WALES, AUSTRALIA<br>NEW 39.36' (12 M) MONOPOLE                                                                                                                                                                                                                                                                                                                                |                          |                                                          |  |  |
| PROJECT No: AI<br>DRAWN BY:<br>DESIGNED BY:<br>CHECKED BY:<br>DATE:                                                                                                                                                                                                                                                                                                                                    | 00020-0333               | .004.7205<br>TAN<br>RWH<br>TJD<br>10/1/2020              |  |  |
| DIRECT EMBED<br>DETAILS                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                          |  |  |
| S-3                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                          |  |  |